
Parkinsonian Gait Detection Using iPad LiDAR and Pose Estimation 
 
Introduction 
 
Parkinson’s disease (PD) is a progressive neurodegenerative disorder that affects over 10 
million people worldwide, making it the second most common age-related neurodegenerative 
condition in North America [1]. Despite its prevalence, the current diagnostic process for PD 
remains primarily clinical and subjective. Diagnosis is typically based on the visual assessment 
of motor symptoms by neurologists, including tremors, bradykinesia, rigidity, and postural 
instability [2]. This observational method often results in delayed or inaccurate diagnoses, 
particularly during the early stages of the disease when symptoms may be subtle or 
inconsistent. 
 
There is a growing need for accessible, objective, and non-invasive tools to support early 
detection and monitoring of Parkinson’s. Gait abnormalities are among the earliest motor 
symptoms of PD and present a strong opportunity for automated analysis. Parkinsonian gait, as 
it is commonly known, is characterized by a range of distinct features, including reduced stride 
length, asymmetrical arm swing, and decreased joint range of motion. These movement 
irregularities often serve as early visible indicators of PD progression [3]. 
 
We propose a novel, low-cost system that combines LiDAR (Light Detection and Ranging) data 
from consumer-grade Apple devices (e.g. iPad Pro) with a vision-based human pose estimation 
model to extract 3D joint trajectories and gait features that will serve as a more accessible and 
objective PD detection pipeline. Google’s MediaPipe pose estimation model provides a 
lightweight and efficient framework for tracking major body landmarks, including the elbows, 
hips, knees, shoulders, wrists, and ankles. By aligning pose landmarks with LiDAR depth data, 
our pipeline enables accurate reconstruction of 3D motion without requiring wearable sensors or 
specialized motion capture systems. This fusion of affordable hardware and real-time computer 
vision has the potential to enable scalable, at-home screening and monitoring for Parkinson’s 
disease. 
 
Related Work 
 
Parkinsonian Gait Analysis with Wearable Technology 
 
Gait analysis has long been used to aid in the detection of Parkinson’s disease (PD), as early 
motor symptoms often include changes in stride length, gait speed, arm swing, and postural 
stability. Numerous studies have demonstrated the diagnostic value of these gait parameters in 
identifying early signs of PD [4] [5] [6]. Traditional approaches often rely on wearable devices 
such as inertial measurement units (IMUs), accelerometers, or gyroscopes to monitor gait 
dynamics [7].  As such, they are not well suited for continuous, large-scale, or at-home 
screening. Our work addresses these limitations by proposing a non-invasive and low-cost 
alternative for automated gait assessment using consumer devices. 
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Gait Analysis with Pose Estimation 
 
Recent advances in computer vision have enabled markerless motion capture using pose 
estimation frameworks such as OpenPose and MediaPipe. These models can extract 2D joint 
locations from RGB video, enabling estimation of joint trajectories and limb movements without 
physical sensors. MediaPipe, in particular, is a lightweight and open-source model developed by 
Google that operates in real time on mobile devices, making it an attractive solution for at-home 
gait analysis [8]. Prior work has shown that joint trajectory features derived from pose estimation 
can help distinguish between healthy individuals and those with neurodegenerative disorders 
[9]. However, purely 2D approaches lack depth information and may struggle with occlusions or 
camera angle dependencies. Some systems attempt to overcome this by using multiple camera 
views, but such setups are impractical for everyday use. Our approach integrates pose 
estimation with LiDAR-based depth data to enhance the accuracy and robustness of gait 
analysis in uncontrolled settings. 
 
LiDAR-based Gait Analysis 
 
LiDAR technology has been increasingly explored for its potential in capturing accurate 3D 
motion data. Several studies have demonstrated the effectiveness of LiDAR-based systems in 
gait tracking and classification, including for Parkinson’s detection [10] [11]. These systems, 
however, often rely on high-end LiDAR sensors that are expensive and not widely available. In 
contrast, we leverage the LiDAR capabilities of commercially available Apple devices (iPhone 
12 Pro or later and/or iPad Pro), which offer real-time depth sensing in a compact and affordable 
manner. By aligning this LiDAR depth data with MediaPipe pose landmarks, our system 
captures accurate 3D joint trajectories and can extract features indicative of Parkinsonian gait. 
This is one of the first approaches to combine consumer-grade LiDAR with pose estimation for 
Parkinson’s screening, enabling accessible and scalable home-based monitoring. 
 
Methods 
 
Experimental Setup 
 
LiDAR recordings were captured using the Stray Scanner app on an iPad Pro M4. The app 
provides the necessary camera intrinsics, RGB video, depth maps, and depth confidence data. 
Videos were recorded at 60 frames per second at the iPad's maximum LiDAR resolution of 
192×256 pixels. Subjects were seated approximately five meters from the camera, which was 
mounted on a tripod. The room was well-lit with no background motion. At the start of each 
recording, the subject was instructed to stand up and walk straight toward the camera. 
Recording was stopped once the subject exited the camera’s field of view. ​
​
Subjects were healthy volunteers who performed both a normal walk and a simulated 
Parkinsonian gait by mimicking symptoms such as reduced stride length, gait freezing, and 
slower walking speed. Each subject completed two walking trials. The dataset includes 5 
subjects (3 male, 2 female) and a total of 10 videos. 

https://medium.com/@devaangnadkarni01/exploring-the-power-of-googles-mediapipe-use-cases-and-applications-1aef555f3200
https://pubmed.ncbi.nlm.nih.gov/33935106/
https://www.mdpi.com/1424-8220/24/4/1172
https://openaccess.thecvf.com/content/CVPR2023/papers/Shen_LidarGait_Benchmarking_3D_Gait_Recognition_With_Point_Clouds_CVPR_2023_paper.pdf


LiDAR Testing 

To validate the iPad’s LiDAR accuracy, we conducted a series of calibration tests across various 
spatial and environmental conditions. 
 

1)​ Camera Center Testing: The LiDAR sensor was 
positioned 1 meter from a flat surface. At each 0.25 
m increment (up to 3 m), we recorded the depth at 
the image center and compared it to the real-world 
measured distance. Across all distances, the error 
was under 0.25%, confirming high accuracy near 
the camera center. 

 
 

2)​ Euclidean Distance Testing: We marked fixed points 
on a whiteboard corresponding to known positions 
in the RGB image and matched these with pixels in 
the depth map. Percent error across all points was 
below 3%, indicating consistent depth accuracy 
across the image frame. 

 
 

3)​ Light vs Dark Test: Images were taken under varied lighting conditions. Depth values 
showed less than 0.5% variation, confirming that lighting and shadows have negligible 
impact on LiDAR accuracy. 

 
Table 1: Light vs Dark % Error 

Dark Light % error 

96.5 96.3 0.207253886 

92.9 92.8 0.1076426265 

98.3 98.3 0 

95.6 96 0.4184100418 

78.8 78.9 0.1269035533 

 

4)​ Color Test: Colored paper (dark blue, bright red) was placed on a whiteboard to test 
whether color affected depth measurements. Across all test points, differences between 
the colored and control (white) surfaces were under 1%, except for one outlier. Thus, 
surface color had minimal influence on LiDAR depth data. 

 
 
 
 



Table 2: Color Test 

 Blue (cm) Red (cm) White (cm) % Diff Blue % Diff Red 

Middle 51.3 51.5 51.6 -0.5813953488 -0.1937984496 

Left 57 57 57.2 -0.3496503497 -0.3496503497 

Right 54.6 55.6 54.9 -0.5464480874 1.275045537 

Top 52.9 53.1 53.2 -0.5639097744 -0.1879699248 

Bottom 53.4 53.6 53.6 -0.3731343284 0 

 
 
Data Processing and Analysis Pipeline 
 
The MediaPipe framework identifies 33 anatomical landmarks per frame. For gait analysis, we 
focused on 12 key points, namely the left and right ankles, knees, hips, shoulders, elbows, and 
wrists. Each landmark has a unique pixel coordinate which we map to the LiDAR data from 
each frame, providing landmarks with z-axis depth values in meters.  

 
Fig. 1 & 2: LiDAR depth map with corresponding MediaPipe landmark map 
 
By using the depth values of key landmarks we can extract the 3D coordinates of the targeted 
joints and calculate the angles they form relative to one another. To obtain the x and y locations 
of each joint relative to the center of the camera, we utilize the camera intrinsic data along with 
the depth data in meters, plugging them into the back-projection equations for a pinhole camera 
model: 
  
x = (u - cx) * d / fx  
y = (v - cy) * d / fy,  
 
where (fx, fy) is the camera focal length components, (cx, cy) is the center pixel coordinate of 
the camera, (u,v) is the target pixel coordinate, and d is the depth in meters. 
 
Having determined the 3D location of each pixel in the video, we are able construct 3D point 
cloud visualizations of the walking videos, and also calculate gait parameters such as knee, 



elbow, and hip angle. To calculate these angles, we utilize the cosine similarity formula. 

 
For example, in calculating the hip angle, we take the hip point as the pivot and identify a vector 
from the hip to the shoulder (A) and one from the hip to the knee (B). We then plug these into 
the cosine similarity formula which gives us the hip angle at each frame of the video. 
 
Plotting the depth (z-axis distance) along with the angles of these joints over time as the subject 
walks towards the camera, we gain insight into gait patterns which can be used to determine 
abnormal gait. Some key characteristics of gait reflected in the graphs are the speed of the 
subject's gait, freezing or hesitation, range of motion, and gait rhythm.  
 
Detrending​
​
After mapping the pose landmarks to corresponding LiDAR depth measurements, we applied a 
polynomial detrending algorithm to the depth vs time signals. This process removes overall 
trends in the data – such as gradual forward movement – allowing for clearer visualization of 
cyclical gait patterns like walking, as demonstrated in Figures 6 and 7. 

By analyzing the detrended signals, we can more reliably identify key gait characteristics, 
including asymmetry between left and right sides, step frequency, and the amplitude of joint 
oscillations. These features are critical for distinguishing normal gait from Parkinsonian gait, 
which is often marked by irregular rhythms and uneven leg movements.​
​
Results​
​
The goal of the experiment was to extract, analyze, and compare depth and joint angle data 
from LiDAR recordings of a subject performing a sit-to-stand transition and walking toward the 
camera with normal and Parkinsonian gait. Using the iPad Pro’s LiDAR sensor and the 
MediaPipe pose estimation model, we computed time series data for key joint angles (e.g., 
knee, hip, elbow) and their depth (z-axis) positions. ​
​
The following results include temporal profiles of both joint angles and depth trajectories. We 
also report observations of gait features characteristic of Parkinsonian movement, including 
reduced joint amplitude, irregular timing, and limited range of motion. 

Joint Depth vs Time 
 
Figure 3 displays the depth of the left knee joint over time, comparing a normal walk (blue line) 
with a simulated Parkinsonian gait (red line) from the same participant. The x-axis represents 
time in seconds, and the y-axis represents depth (distance from the iPad camera) in meters. 
 



 
Fig. 3: Normal vs Parkinsonian left knee position over time 
 
This graph illustrates clear differences between the two gait patterns. The normal walk 
demonstrates quicker, more dynamic motion with greater oscillation between steps. In contrast, 
the Parkinsonian gait is delayed and less consistent, characterized by a slower walking pace 
and smaller overall depth changes, indicative of reduced stride length. The hesitation observed 
at the start corresponds to difficulty initiating movement, a common Parkinson’s symptom. 
These differences suggest that depth trajectories of key joints can serve as quantifiable markers 
for motor impairment in Parkinson’s disease. 
 
Joint Angle vs Time 
 

 
Fig. 4 & 5: Normal vs Parkinsonian left knee angle and left hip angle over time​
​
Figures 4 and 5 display the left knee and left hip angles plotted over time. Initial lower angles 
(approximately 100–130 degrees) correspond to the subject sitting, with knees and hips flexed. 
As the subject stands, these angles increase toward 180 degrees.​
​
Subjects simulating Parkinsonian gait exhibited prolonged difficulty standing, as reflected by 
their knee and hip angles taking around twice as long to reach their peak on average. Moreover, 
episodes of freezing of gait are visible when the joint angle momentarily decreases or plateaus 
before completing the standing motion.​
​
 



Detrended Comparison 

 
Fig. 6 & 7 Normal left and right knee detrended and Parkinsonian left and right knee detrended 
over time 
 
Figures 6 and 7 display the detrended depth vs time graph of the left and right knee side by side 
for both normal walking (figure 6) and a subject simulating Parkinsonian gait (figure 7). The data 
from both knees are aligned to visualize bilateral leg movement.  
 
In the normal gait, the knee motions display rhythmic, alternating peaks and troughs between 
the left and right legs, corresponding to swinging and stance phases. Conversely, the 
Parkinsonian gait exhibits irregular and poorly synchronized knee trajectories, with inconsistent 
amplitude and timing across legs. This indicates leg asymmetry and irregular rhythm – hallmark 
features of Parkinsonian gait.​
​
These detrended visualizations reinforce the potential of depth-based joint tracking as a 
non-invasive, objective method to characterize gait abnormalities associated with Parkinson’s 
disease.​
​
Discussion​
​
Significance​
​
Our analysis demonstrates clear and consistent distinctions between normal and simulated 
Parkinsonian gait based on both joint angle trajectories and depth data. The Parkinsonian trials 
consistently exhibited a reduced range of motion, as indicated by shallower depth fluctuations, 
along with bradykinesia, reflected in slower walking speeds. Additionally, these trials revealed 
irregular timing, hesitations, and abrupt pauses during the sit-to-stand transition, closely 
mirroring clinically recognized features such as freezing of gait and delayed movement initiation. 
These observations align with established motor symptoms of Parkinson’s disease and confirm 
that our system effectively captures key spatiotemporal gait features relevant to PD 
assessment. The reproducibility of these patterns across subjects underscores the potential of 
our method as a non-invasive, objective tool for early detection and ongoing monitoring of 
Parkinsonian motor impairments.​
​



This project introduces a novel, consumer-grade approach to gait analysis by integrating LiDAR 
depth sensing with vision-based pose estimation. Unlike traditional diagnostic methods that rely 
on subjective clinical observation or specialized hardware such as wearable sensors and motion 
capture systems, our system provides a more accessible, low-cost, and scalable alternative. 
Leveraging the LiDAR capabilities embedded in modern iPads and iPhones, in combination with 
MediaPipe’s lightweight pose tracking framework, we enable accurate 3D joint tracking with 
minimal setup: no wearables, markers, or controlled environments required. This ease of 
deployment supports use in real-world settings, including at-home screenings and remote 
telehealth consultations.​
​
Critically, our system augments standard 2D pose estimation with real-time 3D data, significantly 
improving robustness against challenges such as poor lighting, occlusions, and non-optimal 
camera angles. This hybrid approach achieves a balance between affordability and technical 
precision, making it well-suited for both clinical and non-clinical applications. As 
LiDAR-equipped mobile devices continue to proliferate, the potential impact and scalability of 
this gait analysis pipeline will grow, positioning it as a promising solution for accessible 
neurodegenerative disease screening.​
​
Limitations​
​
While our preliminary findings are encouraging, several limitations must be considered. Most 
notably, the dataset used in this study was small in size and did not include individuals with a 
clinical diagnosis of Parkinson’s disease. Instead, simulated Parkinsonian gait was performed 
by healthy participants, which may not capture the full complexity or variability of true 
Parkinsonian motor symptoms. As such, clinical validation using real patient data is essential to 
assess the diagnostic sensitivity and specificity of our method. Accessing patient populations for 
this purpose involves navigating review board protocols, HIPAA compliance, and other 
regulatory considerations, all of which introduce logistical complexities to large-scale clinical 
deployment.​
​
Additionally, our system was limited by the technical constraints of the iPad's LiDAR sensor, 
which operates at a relatively low spatial resolution (192×256 pixels). This can lead to noisy or 
low-confidence depth frames, particularly at greater distances or under suboptimal conditions. 
While we employed basic filtering and smoothing techniques to mitigate these issues, further 
improvements to the data preprocessing pipeline – including more advanced noise reduction, 
temporal smoothing, and confidence-based landmark weighting – are necessary to ensure 
reliable and robust feature extraction in varied real-world environments.​
​
These limitations reflect an intentional tradeoff in leveraging a consumer-grade, widely available 
device for the sake of accessibility and scalability. Although this introduces some performance 
constraints, the steady advancement of mobile LiDAR technology suggests that the accuracy 
and reliability of such systems will improve over time, enhancing the viability of this approach for 
clinical and at-home use. 



Next Steps​
​
The promising results of this study lay the groundwork for further development and real-world 
application of our Parkinsonian gait detection system. A key next step is clinical validation 
through trials with actual PD patients. Collaborating PD research centers will allow for data 
collection from individuals at various stages of the disease, which is crucial for evaluating the 
system’s diagnostic accuracy and sensitivity. In parallel, the dataset should be expanded to 
include a larger and more diverse population, encompassing different ages, body types, and 
walking patterns to improve generalizability and reduce bias. Longitudinal studies tracking 
patients over time would also help assess disease progression and response to treatment.​
​
Beyond data collection, future work will focus on automating gait feature extraction – such as 
stride length, joint asymmetry, and step frequency – and training machine learning models to 
classify gait as normal or Parkinsonian. This would transform the system into a fully automated 
screening tool. To improve accuracy and robustness, enhancements to the data pipeline are 
needed, including better noise filtering, handling of low-confidence LiDAR frames, and 
smoothing algorithms for more reliable joint tracking.​
​
Finally, while this pipeline was designed for Parkinson’s detection, the same methodology could 
be adapted to support early diagnosis and monitoring of other neurological and movement 
disorders, such as Huntington’s disease, multiple sclerosis, or post-stroke impairments. By 
building on this foundation, we aim to contribute to a more accessible and objective future in 
neurodegenerative disease screening.​
​
Conclusion​
​
This project demonstrates the feasibility of using consumer-grade devices, specifically the iPad 
Pro’s LiDAR sensor in combination with MediaPipe pose estimation, to extract clinically relevant 
gait features indicative of Parkinsonian gait. By reconstructing 3D joint trajectories and 
analyzing depth and angle patterns over time, we were able to identify key characteristics of 
Parkinson’s disease such as reduced stride length, asymmetry, freezing of gait, and irregular 
joint motion.​
​
Our results suggest that accessible, non-invasive, and affordable tools can be developed for 
early detection and continuous monitoring of Parkinson’s disease outside of clinical settings. 
While this study was conducted using simulated Parkinsonian gait, it lays the groundwork for 
future research with real patient data, larger cohorts, and more advanced feature extraction. As 
LiDAR hardware continues to improve, systems like the one proposed here have the potential to 
revolutionize at-home neurological screening and empower earlier, more objective diagnosis of 
movement disorders. 
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